Pydantic is a Python library used for data validation and settings management. It allows you to define data schemas using Python annotations and then automatically validates input data against those schemas. Here are some features of Pydantic along with examples:
- Model Declaration:
from pydantic import BaseModel class User(BaseModel): username: str email: str age: int
2. Data Validation:
user_data = {"username": "john_doe", "email": "[email protected]", "age": 25} user = User(**user_data)
3. Default Values:
class Item(BaseModel): name: str = "Unknown" price: float = 0.0
4. Data Parsing:
data = {"name": "Product", "price": "25.5"} item = Item.parse_obj(data)
5. Custom Validators:
from pydantic import validator class UserModel(BaseModel): username: str email: str @validator("username") def username_alphanumeric(cls, v): assert v.isalnum(), "must be alphanumeric" return v
6. Dependency Injection:
from pydantic import BaseSettings
class Settings(BaseSettings):
api_key: str
settings = Settings(_env_file=".env")
Pydantic helps avoid input errors, improves code clarity, and simplifies application configuration management. With these features, you can ensure that the data used in your application meets expectations, reducing potential bugs and enhancing application security.
Discover more from Susiloharjo
Subscribe to get the latest posts sent to your email.